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SUMMARY 
To predict the unsteady convected gust aerodynamic response of a cascade comprised of arbitrary thick and 
cambered aerofoils in an incompressible, inviscid, flow field, a complete first-order model is formulated. The 
flow is analysed by considering a periodic flow channel. The velocity potential is separated into steady and 
unsteady harmonic components, each described by a Laplace equation. The strong dependence of the 
unsteady aerodynamics on the steady effects of aerofoil and cascade geometry and incidence angle is 
manifested in the coupling of the unsteady and steady flow fields through the unsteady boundary conditions. 
Analytical solutions in individual grid elements of a body-fitted computational grid are then determined, 
with the complete solution obtained by assembly of these local solutions. The validity and capabilities of this 
model and solution technique are then demonstrated by analysing the steady and unsteady aerodynamics of 
both theoretical and experimental cascade configurations. 

INTRODUCTION 

Unsteady aerodynamic gust models have typically been restricted to thin aerofoil theory, with the 
unsteady gust-generated flow field assumed to be small as compared to the steady mean potential 
flow. In addition, the aerofoils are considered to be flat plates at zero incidence. Thus the unsteady 
aerodynamics uncouples from the steady flow, resulting in models wherein the flow is linearized 
about a uniform parallel flow. Such models have considered convected gusts, including transverse 
gusts for both isolated aerofoils and cascades’. and linearly combined transverse and chordwise 
gusts for isolated aer~foi ls .~’  Unfortunately, these linearized models are only approximate, 
having neglected second-order terms. Thus they cannot be extended to finite incidence angles or 
realistic cambered profiles, i.e. loaded aerofoils and cascades. 

In many applications, e.g. fluid machinery, cascades comprised of aerofoils with large camber 
and thickness which operate at finite incidence angle to a non-parallel mean flow field are 
required. Unfortunately, the classical thin aerofoil approach is not adequate for such appli- 
cations. For an isolated aerofoil, Goldstein and Atassi’ and Atassi6 developed a theory for the 
inviscid incompressible flow past the single aerofoil subject to an interacting periodic gust. The 
theory assumes that the fluctuating flow velocity is small compared to the mean velocity, with the 
unsteady flow linearized about the full potential steady flow past the aerofoil, which accounts for 
the effects of aerofoil geometry and mean flow angle of attack. 

In this paper the convected gust-generated unsteady aerodynamic response of an arbitrary 
aerofoii cascade in an incompressible, inviscid, flow field is analysed. This is accomplished by 
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formulating and developing a complete first-order model, i.e. the classical thin aerofoil theory 
assumption of the steady flow being uniform and parallel is  not used, to predict the incom- 
pressible, unsteady aerodynamics generated by a two-dimensional gust convected with the steady 
mean flow past an arbitrary cascade comprised of thick, cambered aerofoils at non-zero mean 
flow incidence angle. The unsteady flow field is considered to be rotational and is linearized about 
the full steady potential flow past the cascade. Thus the effects of aerofoil profile and mean flow 
incidence are completely accounted for through the mean potential flow field. The steady 
potential flow field and the potential component of the unsteady flow are individually described 
by Laplace equations, with the unsteady potential decomposed into circulatory and non- 
circulatory parts. The steady potential is independent of the unsteady flow. However, the strong 
dependence of the unsteady aerodynamics on the steady effects of aerofoil and cascade geometry 
and incidence angle are manifested in the coupling of the unsteady and steady flow fields through 
the unsteady boundary conditions. 

A locally analytical solution is developed. In this technique the discrete algebraic equations 
which represent the flow field equations are obtained from analytical solutions in individual grid 
elements. A body-fitted computational grid is utilized. General analytical solutions to the 
transformed Laplace equations are developed by applying these solutions to individual grid 
elements, i.e. the integration and separation constants are determined from the boundary 
conditions in each grid element. The complete flow field is then determined by assembling these 
locally analytical solutions. 

MATHEMATICAL MODEL 

Figure 1 presents a schematic representation of a thick, cambered aerofoil cascade at finite mean 
flow incidence a0 to the far-field uniform mean flow U,, = U,i, with a superimposed convected 
two-dimensional harmonic gust. The cascade has a stagger angle of 6, with S the distance between 

+ 

, 

\ 
Figure. 1.  Flow field schematic 
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the aerofoils along the stagger line and 8 the inlet blade angle. The gust amplitude and harmonic 
frequency are denoted by A and o respectively. The two-dimensional gust propagates in the 
direction K = k , i  + k2 j, where k, is the reduced frequency and k, is the transverse gust wave 
number, i.e. the transverse component of the gust propagation direction vector. 

The complete flow field Q(x, y, t) is assumed to be comprised of a steady mean flow Qo(x, y )  
and a harmonic gust unsteady flow field QG 

Q(x, Y ,  t) = Qo(x, Y )  + Qb(x, ~)ex~( ik i t ) .  (1) 

Steady $ow 

defined. The complete flow field is then described by the following Laplace equation: 
For the steady flow of an incompressible, inviscid, fluid, a velocity potential function can be 

v2 Qo (x, Y )  = 0, (2) 
where 

Qo(x, Y ) =  V@O(X, Y). 

Since the Laplace equation is linear, the velocity potential can be decomposed into components 
by the superposition principle. In particular, the steady potential is decomposed into non- 
circulatory components QNc(x, y )  and Qc(x, y): 

WX, Y ,  t) = @NC(x, y) + raC(x, Y ) ,  (3) 
where V2QNc = 0, V2aC = 0 and r is the unknown steady flow circulation constant. 

wake-dividing streamline and cascade periodic boundary conditions must be specified. 

far-field exit boundary conditions (equation (5)): 

To complete the steady flow mathematical model, far-field inlet, far-field exit, aerofoil surface, 

The steady far-field inlet flow is uniform (equation (4)), with the mass flow rate specified by the 

*NC 1 far-field inlet = '3 

@C I far-field inlet = ' 9  

= u, cos(cro + O), 1 far-field exit 

31 =o, 
an far-field exit 

where n is the surface unit normal. 
A zero normal flow velocity is required on the aerofoil surfaces: 

The steady velocity potential is discontinuous along the aerofoil wake-dividing streamline. The 
steady flow discontinuity is satisfied with a continuous non-circulatory velocity potential and a 
discontinuous circulatory velocity potential. The steady circulatory potential discontinuity is 
equal to the steady circulation r; also specified is the continuity of the steady non-circulatory 
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velocity potential along the wake streamline: 

where TE denotes the aerofoil trailing edge and the superscripts + and - denote the upper and 
lower aerofoil surfaces respectively. 

In addition, the Kutta condition is applied, thereby enabling the steady circulation constant r 
to be determined. The Kutta condition is satisfied by requiring the chordwise velocity com- 
ponents on the upper and lower aerofoil surfaces to be equal in magnitude at the trailing edge: 

I uOl'& = I uOITE. (8) 

(94  

The cascade periodic steady velocity potential boundary conditions are given by 

@NC 1 upper boundary = @NC I lower boundary + Lrm -k 

/upper boundary lower boundary' 

@Clupper boundary = @Cl lower boundary, (94 

Gust unsteady aerodynamics 

generated unsteady flow field into harmonic rotational, QR, and potential, QP, components: 
The two-dimensional gust unsteady flow field Q, is determined by decomposing the gust- 

The rotational gust component is described by the following linearized unsteady Euler 
equations, determined by linearizing the unsteady flow about the steady flow field: 

DO 1 
- QR + QR * V(V@o) = - - VP,, Dt P 

where 

and P ,  is the unsteady pressure associated with the rotational gust flow field. 
The gust is assumed to be convected with the steady mean flow past the aerofoil cascade and 

therefore does not interact with the cascade. Thus the following solution for the rotational gust is 
determined by solving the linearized Euler equations in the far upstream where the steady flow 
field is uniform: 

where 
QR = u + i  + u+j ,  (12) 

u+ = - Ak,exp[ik,(t - x) - ik,y] and 

It should be noted that in this gust solution, the components U +  and u+ are coupled, the ratio of 
their amplitudes being u+/u' = - kz/k,. Also, this solution corresponds exactly to the Sears 

u +  = Ak,exp[ik,(t - x) - ik,y]. 
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transverse gust' when k ,  = 0, i.e. u+ = 0 and u +  = A k ,  exp [ik,(t - x)]. However, this gust 
solution differs from that used in the Horlock3 and Naumann and Yeh4 models in which: (1) the 
two gust components are uncoupled, u+ = c+exp[ik,(t-x)] and u +  = ;'exp[ik,(t-x)], 
where c' and ;+ denote the individual amplitudes of the two gust components, which are 
independent of each other; (2) the gust and resulting unsteady aerodynamics are independent of 
the transverse component of the gust propagation direction vector K = k ,  i + k ,  j. 

The potential gust component WG is described by a Laplace equation. The solution is 
determined by decomposing this potential gust component into circulatory and non-circulatory 
components @bc(x, y) and WGNC(X, y), each of which is individually described by a Laplace 
equation: 

V 2 @ b c =  0, V2@bNC = 0, (134 
where r b  is the unsteady gust circulation. 

Boundary conditions must be specified in the far-field inlet, far-field exit, aerofoil surface, wake- 
dividing streamline and cascade periodic boundary for the gust circlatory and non-circulatory 
components. 

The inlet far-field gust velocity potential boundary conditions are obtained by using a Fourier 
series to satisfy the periodicity condition at the far upstream:' 

@GC 1 far-field inlet = - 

where Po is the interblade phase angle and n is the surface unit normal. 
The exit far-field gust non-circulatory potential boundary condition (equation (15a)) is ob- 

tained in a manner analogous to that for the inlet. Since the wake does not attenuate in the far- 
field, the gust circulatory potential boundary condition (equation (1 5b)) is obtained by solving the 
Laplace equation at the far-field exit and satisfying the blade-to-blade periodicity ~ondition:~ 

@GNC I far-field exit = - , 
far-field exit 

where 
Po + k ,  sin 6 / S  

s cos 6 
V =  

The aerofoil surface boundary conditions specify that the normal velocity of the flow field must 
be equal to that of the aerofoil 
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= WG(x, y )  = upwash. U6b) 

The gust-generated unsteady rotational and potential flow fields are coupled through the 
boundary conditions on the non-circulatory gust component. In particular, the aerofoil cascade is 
stationary, with the rotational gust defined in equation (12) convected with the mean steady flow 
field. Thus the upwash on the aerofoil, WG(x, y), is determined by requiring the normal 
component of the unsteady flow field to be zero on the aerofoil: 

or 

W G ( X ,  y )  = - A - kz + k, exp[:- i(k,x + k,.)], (:: ) 
where f ( x )  specifies the aerofoil profile. 

The gust unsteady velocity potential is discontinuous along the aerofoil wake-dividing stream- 
line. This discontinuity is satisfied with a continuous non-circulatory velocity potential and a 
discontinuous circulatory velocity potential. The unsteady circulatory velocity potential dis- 
continuity is specified by requiring the pressure to be continuous across the wake and then 
utilizing the unsteady Bernoulli equation to relate the unsteady velocity potential and the 
pressure. The resulting circulatory potential wake streamline discontinuity is given in equation 
(18); also specified is the continuity of the non-circulatory velocity potential along the wake 
streamline: 

AW&Iwake = T',exp[- ik(x -- l)], 

A%NC1 wake = O. 

(184 

( 18b) 
The Kutta condition is also applied to the unsteady gust flow field. This enables the unsteady 

circulation constant rl, to be determined. The Kutta condition is satisfied by requiring no 
unsteady pressure difference across the aerofoil chordline at  the trailing edge. The corresponding 
relation for the trailing edge gust velocity potential difference is determined from the unsteady 
Bernoulli equation: 

AP'pI,, = P p l &  - P p 1 . r ~  == 0, 

( V Q O . V W G  + ikcDb))& = ( V @ o . V @ { 3  + ikWG)lGE, 

( 194 

(19b) 
where TE denotes the aerofoil trailing edge, the superscripts + and - denote the upper and 
lower aerofoil surfaces respectively and Pp is the unsteady pressure associated with the gust 
potential flow field. 

The cascade periodic gust potential boundary conditions are given by 

%NC I upper boundary = ciao wGNCI lower boundary 7 (204 

- eiPo ___ 
lower boundary ' 

- 1 upper boundary 

@GC 1 upper boundary = eiaa cDGC 1 lower boundary 9 (204 

- eiPo __ - % I upper boundary 

where s is the unit vector along the stagger line of the cascade. 
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The unsteady dependent variable of primary interest is the unsteady pressure PG, from which 
the unsteady aerodynamic lift on the aerofoil is calculated. It is determined from the solution for 
the steady and unsteady gust velocity potentials, the unsteady Bernoulli equation and the 
unsteady rotational gust pressure PR: 

(21) P G  = P p  + PR = - V@o*VWG - ik,WG + P,. 

COMPUTATIONAL DOMAIN 

Computational grid 
A boundary-fitted computational grid generation technique is utilized for the numerical 

solution.* A Poisson-type grid solver is used to fit a C-type grid around a reference aerofoil in the 
cascade. This method permits grid points to be specified along the entire boundary of the 
computational plane. As depicted in Figure 2, the boundary in the physical plane is denoted by 
the curve a-bs-d-e-f-g-h-i-a and encompasses the aerofoil, its wake, the far-field inlet, the far- 
field exit and the cascade periodic boundaries. The application of this grid generation technique 
results in an equally spaced, orthogonal computational grid at the interior points in the 
transformed ( 5 ,  q )  plane. Attractive features of this technique include: mesh clustering in regions of 
high surface curvature; high grid orthogonality, especially in the near-aerofoil surface and 
periodic boundary regions; and the establishment of periodic grids for ease of enforcing cascade 

i h a h 
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i 
e C d e 

Figure. 2. Body-fitted co-ordinate transformation 
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Figure. 3. Gostelow cascade computational grid 

periodic boundary conditions. A typical boundary-fitted grid for a Gostelow aerofoil cascade is 
shown in Figure 3. 

Laplace equations describe the complete flow field including the unknown velocity potentials 
QNC, Qc, WbNC and WGc (equations (3) and (13)). In the transformed (r, q) co-ordinate system the 
Laplace equation takes on the following non-homogeneous form: 

where & is a shorthand method of writing these four velocity potentials in the transformed plane, 
i.e. 6 denotes q),  a,-(<, q), QbNc(c, q)  or WGc((, q); F(5 ,  q)  contains the cross-derivative term 
a2@/a< dq, and the coefficients a, p and y are functions of the transformed co-ordinates 5 and q 
which are treated as constants in each individual grid element. 

Analytical solution 

homogeneous equation by defining a new dependent variable &<, q): 
To obtain the analytical solution to the transformed Laplace equation, it is first rewritten as a 

where 

The general solution for 6 is determined by separation of variables and is given by 

&t7 rl) = cos(l<) + A ,  s i n ( ~ 1  CB, C ~ S ( P ~ )  + B,  sin0rrt)1, (24) 
where p = [(y’ + aB” + l’)/a]”’ and A, A , ,  A , ,  B ,  and B ,  are constants to be determined from 
the boundary conditions. 

LOCALLY ANALYTICAL SOLUTION 

Analytical solutions in individual computational grid elements are determined by applying 
proper boundary conditions on each element to evaluate the unknown constants in the general 



CASCADE AERODYNAMIC GUST RESPONSE 293 

Figure. 4. Computational grid element 

velocity potential solution specified in equation (24). The solution to the global problem is then 
determined through the application of the global boundary conditions and the assembly of the 
locally analytical solutions. 

A typical computational grid element is schematically depicted in Figure 4. The local element 
boundary conditions specify the values of the various velocity potentials at the eight boundary 
nodal points. However, to obtain unique analytical solutions to the Laplace equation in this 
element, i.e. to determine the values of the integration constants in the general solution for each 
element, continuous boundary conditions are required on all four boundaries. For numerical 
purposes, these boundary conditions are expressed in an implicit formulation in terms of the three 
known nodal values on each element boundary. In particular, a combination of a linear and an 
exponential function is utilized on each boundary as they satisfy the Laplace equation: 

where the constants a?), a$) and a$) are determined from the known values at the three nodal 
points on each boundary. 

The general analytical solution to the Laplace equation given in (24) is valid in individual grid 
elements as well as over the complete flow region. To determine the relationship between the 
velocity potential at  the centre of the typical grid element (Figure 4) and its surrounding values, 
the superposition principle is used to decompose 4 into four components, each having only one 
non-homogeneous boundary condition: 



294 H.-W. D. CHIANG AND S. I:LEETER 

Application of the local boundary conditions (equation (25)) together with the orthogonality of 
the Fourier series lead to the following values for Ani:  

Ani = clni$(l, 1) + c2,,i$(l9o) + c3ni$(1, - 1) + c4ni$(o, - 1) + csn i4 (  - 1, - 1) 
A + c 6 n i # ( -  0) + c7ni$(-  1, + c8ni$(o? '1, (27) 

where the constants Clni , ,  , . , Csni are functions of the uy) u$) and US') boundary constants. 

(27)), the value of $ at the centre of the element can be written as follows: 
With the analytical solution in an individual grid element thus specified (equations (26) and 

m 

$CO?O) = c I [ (An ,  - An*) sinh(Pn) + ( 4 3  - 4 4 ~ ~ i n h ( P ; ) l  sin(4J). (28) 
n =  1 

Substituting for the Ani terms (equation (27)) leads to the following: 

$(o, 0)  = Cl$(t, I )  + C2@(t, 0) + C3$(t, - 1)  + c4$(0, - 1)  - c5$(- 1, - 1) 

+ c 6 $ ( -  190) + c 7 $ ( -  1, 1) + c g $ ( o ,  I), (29) 

where the constants C; ,  Ci,  , , , , Cg are functions of the @, uy) and u$) boundary constants as well 
as the transformed co-ordinate functions a, p and y. 

This solution for $ at the centre point is rewritten in term of the original dependent variable @ 
as follows: 

G(o, 0) = c16(l, 1) + c ~ ~ ( I , o )  + c3@(1, - I )  + c,&(o, - 1) + c5@(- 1, - 1)  

+ c6a(- 1, 0)  + c7@(- 1, 1) + c8%(0, I), (30) 
where the constants C,, C2, . . . , C, are again functions of the uy), u$) and ug) boundary constants 
as well as the transformed co-ordinate functions a, 

Thus the local analytical algebraic equation relating the value of the velocity potential at the 
centre of the computational element to its neighbouring eight known nodal values has been 
completely determined. 

and y. 

Computational procedure 

The above technique is applied to adjacent grid elements, with the boundary nodal point 
considered as the interior point. For a general grid e,lement with centre at ( i ,  j ) ,  the resulting 
algebraic relation between the centre value of the velocity potential and its eight surrounding 
nodal values is given by 

G ( i , j ) = ~ ~ + ~ . ~ + ~ & ( i +  I , j +  I ) + C i + l , j & ( i +  l , j ) + C i + l , j - l @ ( i +  1 , j -  1 )  

+ Ci, j -  , %(it j - 1) + Ci - 1. j -  6(i - 1, j  - 1 )  + Ci-l,j&(i - 1, j )  

+ ~ ~ - ~ . ~ + ~ & ( i -  I , j +  I ) + ~ ~ , ~ + ~ a ( i , j +  I), (31) 
where 2 d i 6 i,,, - 1,2 < j < j , , ,  - I and the Ci j  are functions of the uy), uy) and a';" boundary 
constants as well as the transformed co-ordinate functions a, and y .  

1 < i ,< i,,,, 

The global boundary conditions are specified by 

(324 

(32b) 

&(i, 1 )  = aerofoil and wake boundary conditions, 

@ ( i ,  j m a X ) =  far-field inlet and cascade periodic boundary conditions, 1 < i < i,,,, 
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@(i,,,,j) = far-field exit boundary conditions, 1 < j < j,,,, 

@(l,j) = far-field exit boundary conditions, 1 < j < j,,,. 
(324 

(324 
These global boundary conditions together with the interior point solution specified in 

equation (31) for &(i,j), where 2 < i < i,,, - 1 and 2 < j  Gj,,, - 1, lead to a system of algebraic 
equations. For a fixed j-value: 

- c i - l , j @ ( i - l , j ) + @ ( ~ , J ) - c i + ~ , j @ ( z +  l ,j)=Ci+1,j+&5(i+ l J +  1) 

+ ~ ~ ~ ~ , ~ + ~ @ ( i - ~ , j + ~ ) + C ~ , ~ + ~ @ ( i , j + ~ ) + C ~ + ~ , ~ - ~ @ ( ~ +  1 , j -1 )  

+ ci-l,  j -  $(i - l , j  - 1) + ci, j -  @(i , j  - 1). (33) 

The right-hand side of this equation is comprised of known quantities, i.e. the ( j  - ])-terms are 
known from the boundary conditions ( j  = 2) or the last sweep, with the ( j  + 1)-terms determined 
from the boundary condition ( j  = j,,, - 1) or the previous iteration. 

Equation (33) can be written as a tridiagonal matrix, with the matrix solved by Thomas 
algorithm for all j-values (2 I j I j,,, - 1). This procedure is then iterated by successive over- 
relaxation until the entire solution converges. 

RESULTS 

Model and solution oerijication 

The strong dependence of the gust-generated unsteady aerodynamics on the steady effects of 
aerofoil and cascade geometry and incidence angle are manifested in the coupling of the unsteady 
and steady flow fields through the unsteady boundary conditions. Hence valid gust response 
predictions require an accurate analysis of the steady flow field. It is thus necessary to verify both 
the steady and the unsteady modelling and locally analytical solutions. 

The ability of the steady flow model and locally analytical solution to accurately predict 
cascade flow fields is demonstrated by analysing the theoretical cascade initially considered by 
G o s t e l ~ w . ~  This cascade, shown in Figure 3, is characterized by a stagger angle of 37.5", a solidity 
of 1.01, with aerofoils having an 11.25% thickness-to-chord ratio and 32" of camber. The 
correlation of the predicted chordwise distribution of the aerofoil surface static pressure co- 
efficient Cp obtained with the model and solution developed herein and that of Gostelow is 
presented in Figure 5. There is excellent correlation between the two analyses. 

To verify the unsteady aerodynamic gust mathematical model and locally analytical solution, 
predictions are correlated with those from the classical Whitehead analysis.' A flat plate aerofoil 
cascade with a solidity of 1.01 and a stagger angle of 37.5" is considered, with the computational 
grid shown in Figure 6.  The complex aerofoil surface unsteady pressure differences generated by a 
convected transverse gust with a reduced frequency of 0 8  for a wide range of interblade phase 
angles are presented in Figure 7. The excellent correlation between the predictions from the two 
models is readily apparent. 

Experiment correlation 

An experimental investigation of the gust-generated unsteady aerodynamic response of a vane 
row in an extensively instrumented axial flow research compressor at realistically high values of 
the reduced frequency is described in Reference 10. The aerodynamic forcing function to the vane 
row generated by the upstream aerofoil wakes and the resulting downstream vane surface 
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Figure. 5. Gostelow cascade static pressure correlation 

Figure. 6. Flat plate cascade computational grid 

chordwise unsteady pressure distributions were measured. These data were Fourier-decomposed, 
with the final data quantifying both the chordwise and transverse gust components of the forcing 
function, the chordwise distribution of the unsteady pressure difference coefficient, and the steady 
vane surface static pressure distributions. 

Predictions from the model and locally analytical solution developed herein are correlated with 
data for both low and high steady loading operating conditions, characterized by incidence angles 
of 1.0" and 5.5" degrees respectively. The vane profile and row geometry are depicted in Figure 8 
which presents the computational grid. The predicted chordwise distribution of the vane surface 
static pressure exhibits excellent correlation with the data for both steady loading conditions 
(Figures 9 and 10). The data-theory correlations of the unsteady pressure differences across the 
vane chordine at 1.0" and 5.5" incidence are presented in Figures 11 and 12. Also presented as a 
reference are the corresponding classical flat plate cascade predictions of Whitehead.' The 
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Figure. 7. Flat plate cascade unsteady pressure correlation 

Figure. 8. Compressor vane geometry and computational grid 
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Figure. 9. Vane static pressure correlation at low steady loading 
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Figure. 10. Vane static pressure correlation at high steady loading 

correlation between the predictions and the data are similar for the two steady loading conditions 
considered. Both predictions exhibit relatively good correlation with the unsteady pressure 
difference magnitude data, with the chordwise variation of the Chiang-Fleeter cambered aerofoil 
predictions analogous to that of the data. The phase data are in very good agreement with the 
predictions from the model developed herein, with relatively poor agreement between the data 
and the flat plate predictions. This is a result of the coupling between the unsteady and steady 
flow fields. 
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Steady loading effects 

This model and locally analytical solution are utilized to demonstrate the effects of steady 
loading on the gust response of a cambered aerofoil cascade. This is accomplished by analysing 
the gust-generated unsteady aerodynamics on the Gostelow cascade geometry over a range of 
steady loading conditions, characterized by the incidence angle value. In particular, the Gostelow 
cascade steady flow field and unsteady aerodynamics due to two-dimensional gust at an angle of 
266" and a unity reduced frequency are analysed for mean flow incidence angles of 0", lo" 
and 20". 

The predicted chordwise distributions of the aerofoil surface static pressure coefficients cp for 
mean flow incidence angles of 0", 10" and 20" are presented in Figure 13. Increasing the incidence 
angle has a large effect on the steady loading distribution, particularly on the front part of the 
aerofoil. Forward of approximately 20% chord, the steady surface pressure decreases on the 
suction surface and increases on the pressure surface. Aft of this chord location, the pressure 
increases on both surfaces of the aerofoil. 

The effect of increasing the mean flow incidence angle on the gust-generated complex unsteady 
pressure difference across the chordline of the aerofoil, C,, is shown in Figure 14. Both the 
magnitude and the phase lag of the unsteady pressure difference are dependent on the incidence 
angle, with the largest effects found over the front portion of the aerofoil, analogous to the steady 
results. This is a result of the strong dependence of the unsteady aerodynamics on the steady 
effects of aerofoil and cascade geometry and mean flow incidence angle, modelled by the coupling 
of the unsteady and steady flow fields through the unsteady boundary conditions. As a reference, 
the corresponding prediction from the classical transverse gust Whitehead zero-incidence flat 
plate aerofoil cascade model is also shown. The very large differences between the predictions 
from these two models are readily apparent. These are due to the coupling of the steady and 
unsteady flow fields for thick, cambered aerofoils at finite mean flow incidence angles as well as 
the coupled transverse and chordwise gust, which are included in the flow model developed herein 
but not in the Whitehead model. 

I I i-------l----J 20 4 0  fa 80 loo 
% AIRFOIL CHORD 

Figure. 13. Efkct of incidence angle on Gostelow cascade static pressure 
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Figure. 14. Effect of incidence angle on Gostelow cascade unsteady pressure 

CONCLUSIONS 

The unsteady aerodynamic response of a cascade comprised of arbitrary thick and cambered 
aerofoils in an incompressible, inviscid, flow field to a convected gust was analysed by developing 
a complete first-order model. The flow was analysed by considering a periodic flow channel with 
the velocity potential separated into steady and unsteady harmonic components. The unsteady 
flow field was considered to be rotational and was linearized about the full steady potential flow 
past the cascade to account for the effects of aerofoil profile and mean flow incidence. The steady 
potential flow field and the potential component of the unsteady flow were individually described 
by Laplace equations, with the unsteady potential decomposed into circulatory and non- 
circulatory parts. 

A locally analytical solution was developed. In this technique the discrete algebraic equations 
which represent the flow field equations are obtained from analytical solutions in individual grid 
elements. A body-fitted computational grid is utilized. General analytical solutions to the 
transformed Laplace equations were developed by applying these solutions to individual grid 
elements. The complete flow field was then determined by assembling these locally analytical 
solutions. 

The validities of this model and solution technique were demonstrated by correlating predic- 
tions with theoretical results for the Gostelow cascade and a classical flat plate aerofoil cascade 
respectively. This model was then applied to the vane row of an axial flow research compressor. 
Excellent data-prediction correlation was obtained for the steady and the gust-generated 
unsteady vane surface pressure distributions at both low and high steady loading conditions. 
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Finally, the strong dependence of the unsteady aerodynamics on the steady flow field was 
demonstrated by predicting the effects of steady aerodynamic loading on the gust response of the 
Gostelow cascade. 
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APPENDIX: NOMENCLATURE 

aerofoil semichord, C / 2  
steady surface static pressure, p/$p VL 
unsteady pressure difference, Ap/p Lr 1 u + 1 
mean incidence angle 
far-field uniform mean flow 
gust amplitude 
gust harmonic frequency 
gust propagation direction vector 
reduced frequency, wb/U, 
transverse gust wave number 
complete flow field 
steady mean flow 
gust-generated unsteady flow 
steady velocity potential 
steady circulation constant 
unsteady circulation constant 
interblade phase angle 
inlet blade angle 
rotational unsteady flow field 
potential unsteady flow field 
unsteady pressure associated with rotational flow 
chordwise gust component 
transverse gust component 
unsteady harmonic gust potenntial 
circulatory gust velocity potential 
non-circulatory gust velocity potential 
unsteady pressure associated with potential flow 
total unsteady pressure 
cascade stagger angle 
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